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1. Can the exponential-series be expressed by an infinite product? 

1.1. The problem 

Some years ago I fiddled already with this question: can the exponential-series pos-

sibly be expressed by an infinite product and what are the properties and where-

abouts, then?  

 exp(x) = 1 + x + x2/2! + x3/3! + … 

 pxp(x) = (1 + ax)(1 + bx2)(1 + cx3)(1+dx4)… 

 

 q: can exp(x) be expressed by a suitable version of pxp(x) ? 

I didn't go deeply into it and left the subject – until recently when some corre-

spondent stumbled onto the same question and asked me for a comment. This 

reminded me of that old material and I gave it a new consideration. And –with the 

background of years of experiences with the OEIS-sequence-databases1 – there 

occured a beautiful sequence with an exciting symmetry and an eccentric behave 

when the denominators of the coefficients a,b,c… were analyzed separately.  

It has some similarity with a multiplicative sequence2, but also involves powers of 

primefactors in a very symmetric way.  

 

For instance, at indexes n=p*q, where p and q are distinct primefactors, the 

denominator has the very nice symmetric exponential form pq * qp.  It looks, 

as if p and q lovingly carry the weight of each other … :-) . 

 

 

 

 

Context/further reading 

 The idea of conversion of a powerseries into an infinite product-representation is 

not new and not only a game in recreational mathematics; according to H. Gin-

gold/A. Knopfmacher in "Analytic Properties of Power Product Expansions" (1995) 

this idea "appears to have first been studied in the 1930's by Ritt [R] and Feld [F]. 

More recently, Knopfmacher and Lucht [KL] (…)". The Gingold/Knopfmacher-article 

provides also a short list of further literature which I provide here at the references-

section for the interested reader. 

 In the seqfan-mailing list (associated with the Online Encyclopedia of Integer Se-

quences (OEIS)) there was some exchange on this idea; looking through the archives 

I find my own first article on that subject ("A dream of a Series", Jun2008) and an-

other one initiated by Neil Fernandez ("polynomial-to-product transform", Nov 

2008), in which H. Gould pointed to the Gingold/Gould/Mays-article "Power Product 

Expansions" in Utilitas Mathematics (34, 1998, 143-161).  

 I did not yet incorporate any of that literature in this article because I got aware of 

that research only these days when I browsed the seqfan-archive for possible earlier 

discussions of this. Also in this article the main focus are the properties of the spe-

cific sequence of coefficients as found in pxp(x). 

 

 

                                                 

1 see two sequences in [OEIS] which refer to the same notion, called pxp(x) here 
2 see for instance "multiplicative function" in wikipedia [wiki-m] 
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1.2. Two ways to find a solution pxp(x) 

The conversion of exp(x) into pxp(x) is solvable by two simple ways. 

a) iteratively dividing exp(x) by the obvious factors to get pxp(x):  

 E0(x) = exp(x)   = 1 + x + x2/2! + x3/3!   F1(x) = (1 + x)  

 E1(x) = E0(x) / F1(x)    = 1 + 1/2x2 + …  F2(x) = (1 + 1/2 x2 )  

 E2(x) = E1(x) / F2(x)    = 1 – 1/3x3 + …   F3(x) = (1 – 1/3 x3 )  

 E3(x) = E2(x) / F3(x)    = 1 + 3/8x4 + …  F4(x) = (1 + 3/8 x4 )  

 … 

 pxp(x) = F1(x)*F2(x)*F3(x)* F4(x)*… 

 A Pari/GP-program can be used as follows: 

\ps 16  
coeffs = vector(16); 
E_tmp = exp(x); 
{ for(k=1,#coeffs,  
         C = polcoeff(E_tmp,k); 
         coeffs[k] = C;  
         E_tmp = E_tmp/(1 + C * x^k); 
      ); } 
print(coeffs); 
pxp(x) = prod(k=1,#coeffs, 1+coeffs[k]*x^k) 

 

 

b) using the logarithm-series, expanding and comparing coefficients: 

 log(exp(x)) = x 

 log(pxp(x)) = log(1+ax) + log(1+bx2) + log(1+cx3) + … 

 Expand the logarithm-series and collect coefficients of like powers of x: 

   = ax  – a2x2/2 + a3x3/3 – a4x4/4 + a5x5/5 – a6x6/6 +… 

             + b x2                      –  b2x4/2                 + b3x6/3 

                             + c x3                                        – c2x6/2   

    … 

   --------------------------------------------------------------- 

 =log(exp(x)) = 1x +    0         + 0             + 0            +   0              + 0 

 and solve for the coefficients. Then immediately it follows  

   a = 1, b = 1/2, c = –1/3, d = 3/8,  etc… 

 (See a better table below.) 

 A program for Pari/GP 

{ prodcoeffs(f,dim=64) = local(logf,logfcoeffs,prdfcoeffs,a,lc); 
     logf = log(f) 
     logfcoeffs = vectorv(dim,k,polcoeff(lf,k)) ; 
     prdfcoeffs = vectorv(dim); 
     for(c=1,dim-1, 
          prdfcoeffs[1+c]= a =logfcoeffs[1+c]; 
          lc=0;forstep(k=c,dim-1,c,lc++;logfcoeffs[1+k]-= -(-a)^lc/lc ); 
     ); 
 return(prdfcoeffs);} 
 print (prodcoeffs(exp(x)))  

Both methods give the same sequence of coefficients a,b,c,…  
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1.2.1. Inspection of the computation-scheme using the logarithmic representation 

The computation-scheme using the logarithm gives immediate insight in the com-

position of the coefficients, their denominators and numerators.  

Table 1: expand the logarithm-series and order coefficients of like powers of x in 

columns. The columnsums must agree with the coefficients in the first row. Note, 

that the log(f(x)) = log(exp(x)) = 0 + 1x + 0x + … so all entries except the first entry 

are zero in the first row. 

 *x *x
2
 *x

3
 *x

4
 *x

5
 *x

6
 *x

7
 *x

8
 *x

9
 *x

10
 … 

log(f(x))= 1 0 0 0 0 0 0 0 0 0  

log(1+ax) a -a
2
/2  a

3
/3 -a

4
/4 a

5
/5 -a

6
/6 a

7
/7 -a

8
/8 a

9
/9 -a

10
/10 … 

+log(1+bx
2
)   b  -b

2
/2   b

3
/3  -b

4
/4   … 

+log(1+cx
3
)    c   -c

2
/2   c

3
/3  … 

+log(1+dx
4
)     d    -d

2
/2   … 

+log(1+ex
5
)     e     -e

2
/2 … 

+log(1+fx
6
)      f     … 

+log(1+gx
7
)       g    … 

+log(1+hx
8
)        h   … 

+log(1+ix
9
)         i  … 

+log(1+jx
10
)          j … 

+…            

 

The coefficients can be found by a simple recursive process.  

We begin determining a=1 and insert in the second row 1 for a. Then for b follows 

it must equal b=a2/2 =1/2 to make the second columnsum equal zero. Then we can 

insert the powers of b in the 2th, 4th, 6th, 8th,…,(2n)th  column of the second row. 

For c we can simply do the same: c=–a3/3 = –1/3 and fill out the row with powers 

of c.  

Then d is dependent on a and b, so we get d=a4/4 + b2/2 = 1/4 +1/8 = 3/8 . 

What we got so far is: 

Table 2: 

 *x 
*x

2
  *x

3
  *x

4
 *x

5
 *x

6
 *x

7
 *x

8
 *x

9
 *x

10
 

=log(f(x)) 1 0 0 0 0 0 0 0 0  

+log(1+ax) 1 -1/2  1/3 -1/4 1/5 -1/6 1/7 -1/8 1/9 -1/10 

+log(1+bx
2
)   1/2  -1/2

2
/2   1/2

3
/3  -1/2

4
/4   

+log(1+cx
3
)   -1/3   -(-1/3)

2
/2   -(-1/3)

3
/3  

+log(1+dx
4
)     3/8    -(3/8)

2
/2   

+           

 

It is easy to see how this continues. Obviously the composition of a coefficient at 

one index n depends on the divisors of n and their (previously determined) val-

ues.  

 
*x *x

2
 *x

3
 *x

4
 *x

5
 *x

6
 *x

7
 *x

8
 *x

9
 *x

10
 

=log(f(x)) 1 0 0 0 0 0 0 0 0  

+log(1+ax) 1 -1/2  1/3 -1/4 1/5 -1/6 1/7 -1/8 1/9 -1/10 

+log(1+bx
2
)   1/2  -1/8   1/24  -1/64   

+log(1+cx
3
)   -1/3   -1/18   1/81  

+log(1+dx
4
)     3/8    -9/128   

+           

 

For prime n we have an especially simple description, and for n being a power of a 

prime the description of the coefficient is still easily deduced. 
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2. Some numerical properties 

2.1. coefficients at prime- and prime-power indexes 

Let's have a look at the product-formula pxp(x) with known coefficients inserted: 

 pxp (x) = (1 +  x) 

  *(1 + 1/2 x2) 

  *(1 – 1/3 x3)     *(1 +   3/8 x4) 

  *(1 – 1/5 x5)     *(1 + 13/72 x6) 

  *(1 – 1/7 x7)     *(1 + 27/128 x8)*(1 – 8/81 x9)*(1 + 91/800 x10) 

  *(1 – 1/11 x11)*(1 + 1213/13824 x12) 

  *(1 – 1/13 x13)* …  

  … 

An immediate observation: at odd prime-indexes p the coefficient is just –1/p .  

Let's denote an index with n and the coefficient at that index a(n) as used in the 

Online Encyclopedia of Integer Sequences (OEIS), and some prime with the letter p, 

q or r. Then 

 num a(n)n=p>2  = – 1    // numerator 

 den a(n)n=p>2   = p     // denominator 

Using table 1 this is obvious from the fact, that a prime index has no divisors ex-

cept 1 and itself. 

A deeper look at the denominators exhibits more interesting details. For another 

instance: if n is a prime-power n=pk then we find cyclotomic expressions in the 

exponents of p, or, with another notion, the so-called "q-analogues" of powers of p. 

 den a(pk)  = pp"k

  

   where p"k := (pk – 1)/(p – 1) the q-analogue3 of pk  

So for n=4=22, n=8=23, n=9=32, n=343=73 we have  

 den a(22) = 8   = 2 2
"2

 = 2(22-1)/(2-1) = 2 3  

 den a(23) =128   = 2 2
"3

 = 2(23-1)/(2-1) = 2 7  

 den a(32) = 81   = 3 3
"2

 = 3(32-1)/(3-1) = 3 4  

 den a(73) = xxx   = 7 7
"3

 = 7(73-1)/(7-1) = 7 57  

     = 1481113296616977741464105532513750734030421355207 

  

 

 

                                                 

3 see "q-analogue" in wikipedia [wiki-q] 
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2.2. Symmetry and eccentric growth: coefficients at composite indexes 

2.2.1. Index n is composite but squarefree 

The property, which was initially the most astonishing for me, is the most beauti-

ful and intriguing symmetry occuring at indexes of composite squarefree integers.  

We have at an index n as product of two different primes n=p*q: 

 den a(pq) = pq * qp  

   = (p1/p*q1/q)n  

Example: 

 den a(14) = 27 * 72  = 128 * 49 = 6272 

If we have three primefactors in n : n=p*q*r then 

 den a(pqr) = pqr * qpr *rpq  

   = pn/p qn/q rn/r  

   = (p1/p q1/q r1/r )n  

Example: 

 den a(30) = 23*5 * 32*5 * 52*3  = 30233088000000 

 

The sequence strongly resembles multiplicativity, but one could say, it is some 

"overdriven" multiplicativity. 

 

To have a closer look at these coefficients I show a table. The first few coefficients 

are 

Index  

n 

coefficient a(n) 

numerator / denominator 

com 

fac 

Index 

n 

coefficient a(n)  

numerator / denominator 

com 

fac 

1:   1  21:  -34943 / 750141  

2:   1  / 2  22:   12277 / 247808  

3:  -1 / 3  23:  -1 / 23  

4:   3 / 8  24:   593806671 / 13759414272 9 

5:  -1 / 5  25:  -624 / 15625  

6:   13 / 72  26:   57331 / 1384448  

7:  -1 / 7  27:  -58528 / 1594323  

8:   27 / 128  28:   195948483 / 5035261952  

9:  -8 / 81  29:  -1 / 29  

10:   91 / 800  30:   1052424027703 / 30233088000000  

11:  -1 / 11  31:  -1 / 31  

12:   3639 / 41472 3 32:   77010795 / 2147483648  

13:  -1 / 13  33:  -7085759 / 235782657  

14:   505 / 6272  34:   1179631 / 37879808  

15:  -1919 / 30375  35:  -37497599 / 1313046875  

16:   2955 / 32768  36:   169147809135192 / 5777633090469888 24 

17:  -1 / 17  37:  -1 / 37  

18:   196456 / 3359232 8 38:   5242861 / 189267968  

19:  -1 / 19  39:  -89281919 / 3502727631  

20:   1136313 / 20480000  40:   355723139681937 / 13421772800000000  

 

However, since we have rational numbers and Pari/GP displays values in the 

most cancelled version, at indexes n of more complexity (where prime-powers 

and multiple primes are involved) numerators and denominators may have com-

mon factors, which are then cancelled in the display and the regularity seems to be 

broken. However, I found one definition in OEIS (see [OEIS]) for the composition 

of a sequence which agrees with the denominators here, except that it seems to 

contain (the) common factors. Such assumed common factors are red marked in 

the table above; Pari/GP gives the reduced fraction. For instance at n=12 we get 
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the above expected coefficient 3639/41472 cancelled by 3 as 1213 / 13824 which 

is shown by Pari/GP, when computed with the logarithmic scheme. 

 

2.2.2. Index n is composite and not squarefree 

The following expressions are based on heuristics only, not yet rigorously derived 

from the evaluation scheme using the logarithmic representation. 

Denote as for the previous composite, but squarefree case, n by its primefactoriza-

tion (use again 3 sample-primefactors p,q,r and now their exponents a,b,c here) 

 n = p a q b r c …  

Then, with some A,B,C we find heuristically 

 den a(n) = p 
A * q 

B * r 
C   

 A = p"a * q b * r c   // again p"a is the q-analogue of the pa, see (1.1) 

 B = p a * q"b * r c  

 C = p a * q b * r"c  

This can be simplified to get: 

 A = p"a/pa  * n  

  =  (pa – 1)/(p – 1)/pa * n  

  = (1 – 1/pa)/(p – 1) * n 

  = – (p–a – 1)/(p – 1) * n 

  = –p"–a *n  

     // analoguously for each of the primefactors 

 
n

rqp

nrnqnp
cba

cba

rqp
rqpnaden )

111
()( """

""" ***
−−−

−−−

==
−−−

 

Here (after cancellations) the empirical denominators of the coefficients are at 

least divisors of the values, which we expect by the analytical description.  

 

2.3. Example-computations for coefficients at simple-structured indexes 

I didn't derive the full description for the denominators yet; especially the compo-

sition of the numerators seems to be too complex to have a closed form. But the 

following scheme may indicate, how the composition of coefficients can recur-

sively be determined with a saving of effort. 

Assume we want to compute the composition of a coefficient at an index n where n 

is a prime-power. Say, n=3, n=32, n=33, and so on. Then a recursive scheme, 

(shorter than the complete representation of the sums of logarithm series because 

only few positions are relevant) is  

 coefficient denominators 

of sum terms 

max of 

den. 

numerator 

n=31 a(3)  =- (13/3) 31    

n=32 a(9)  =-(19/9  +a(3)3/3) 32, 33+1 34 (32 – 1) 

n=33 a(27)=-(127/27 + a(3)9/9 + a(9)3/3) 33, 39+2 , 34*3+1 313 310 – (32 –1)3 … 

n=34 

a(81) = -(181/81 + a(3)27/27 + a(9)9/9 

     + a(27)3/3) 34, 327+3, 34*9+2 , 313*3+1 340 … 

… … … … … 
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In more generality for an index n, which is the k'th power of a prime p, the de-

nominator is 

 coefficient sk = a(n)  

where n=pk  

denominators 

of sum terms 

max of 

den. 

n=p1 s1=- (1/p)  ( 1) p1  pp"1

 

n=p2 s2=- (1/p2)( 1 + p s1
p) p2, pp  +1 pp"2

 

n=p3 s3=- (1/p3)( 1 + p s1
p2

 + p2 s2
p ) p3, pp2+2 , pp"2*p  +1 pp"3

 

n=p4 s4=- (1/p4)( 1 + p s1
p3

 + p2 s2
p2

 + p3 s3
p) p4, pp3+3 , pp"2*p2+2 , pp"3*p +1 pp"4

 

 …   

    (numerators are too complicated and not displayed here) 

    (in matrix-notation: S = - dV(1/p) * [ sk ] * V(p)) 

For some higher composite indexes follow the primefactor-decomposition for the 

denominator.  

Index n den a(n) formula details for exponents 

180 = 22 * 32 * 5 2135*380*536  135  = 2"2*32*5 = 3*9*5  

 80  = 22*3"2*5 = 4*4*5  

 36  = 22*32*5"1= 4*9 

900 = 22 * 32 * 52 2675 * 3400 * 5216  

27*34 cancelled(*1)  

675  = 2"2*32*52 = 3*225  

400  = 22*3"2*52 = 4*4*25 

216  = 22*32*5"2 = 4*9*6 

1800= 23 * 32 * 52 21575 * 3800 * 5432  

27*32 cancelled(*1) 

1575 = 2"3*32*52 = 7*225  

800  = 23*3"2*52 = 8*4*25 

432  = 23*32*5"2 = 8*9*6 

(*1)  primefactors to indicated power empirically seem to be cancelled against numerator 

due to rational arithmetic in Pari/GP 

 

 

2.4. An external definition-formula for the denominators? (1) 

One definition can be found in [OEIS] and its implementation in Pari/GP-code is 

\\ OEIS(A067911) : a(n) = Product_{ d divides n } d^phi(n/d)  
\\                   (Vladeta Jovovich, Mar 2004) 
\\ Pari/GP 
den_a(n)=local(res); 
         res=1;        \\ fordiv: d running over all divisors of n 
         fordiv(n, d, res = res * d^eulerphi (n/d))); 
         return(res) 

This is at a first glance nearly identical to the procedure using the logarithmic 

scheme, except that I did not yet translate the Euler-phi-function appropriately. So 

except for the cancellation of common factors at high-composite indexes this pro-

cedure matches my result up to index n=2000. The empirical values, computed 

with one of the methods here, have smaller compositions than expected by the 

analytic formula for the denominator only if the index n contains more than one 

prime-power. This is very likely due to cancellations with the numerator. 

 

                                                 

(1) See two more descriptions, matching my approach here, in [OEIS] 
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3. Additional considerations 

3.1. Usability/limitation of the function pxp(x) 

The function pxp(x) is extremely bad suited for practical-use: apparently it has the 

very limited radius of convergence of |x|<1 and partial evaluation needs extremely 

many terms to get approximation to a handful of decimals of the known value by 

the exp(x)-function. 

The coefficients themselves decrease very slowly (although on composite indexes 

n extremely high values occur in denominators compared to n). Here is a table of 

the real-arithmetic values of coefficients for n=1..16 and n=1985..2000  

 

n coefficient n coefficient 

1 1.00000000000 1985 -0.000503778337511 

2 0.500000000000 1986 0.000504030578240 

3 -0.333333333333 1987 -0.000503271263211 

4 0.375000000000 1988 0.000503526205670 

5 -0.200000000000 1989 -0.000502764064949 

6 0.180555555556 1990 0.000503017600544 

7 -0.142857142857 1991 -0.000502260170768 

8 0.210937500000 1992 0.000502512944452 

9 -0.0987654320988 1993 -0.000501756146513 

10 0.113750000000 1994 0.000502007527095 

11 -0.0909090909091 1995 -0.000501251999332 

12 0.0877459490741 1996 0.000501506028120 

13 -0.0769230769231 1997 -0.000500751126690 

14 0.0805165816327 1998 0.000501000354463 

15 -0.0631769547325 1999 -0.000500250125063 

16 0.0901794433594 2000 0.000500502022436 

… … … … 

 

3.2. Factorizing – but exp(x) has no zeros?! 

The product-representation pxp(x) suggests, that we have zeros of exp(x) at xn=-

1/a(n)1/n. However exp(x) has no zero, so what does this mean here? Can the re-

mainder be said to be divergent at that "zeros"? I don't have an answer for this yet. 

3.3. Modifications of the exp(x)-pxp(x) function 

In other contexts I fiddled with the complementary function which occurs, if the 

coefficients in the product-representation change their signs. We have then 

 qxp (x) = (1 –  x) 

  *(1 – 1/2 x2) 

  *(1 + 1/3 x3)     *(1 –   3/8 x4) 

  *(1 + 1/5 x5)     *(1 – 13/72 x6) 

  *(1 + 1/7 x7)     *(1 – 27/128 x8)*(1 + 8/81 x9)*(1 – 91/800 x10) 

  *(1 + 1/11 x11)*(1 – 1213/13824 x12) 

  *(1 + 1/13 x13)* …  

  … 
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Rewritten as powerseries we get 

 qxp(x)  = 1 – x – 1/2 x2 + 5/6 x3 – 17/4! x4 + 49/5! x5 - 19/6! x6  

   – 449/7! x7 + O(x8) 

   = 1 - x - 0.5 x2 + 0.83333 x3 - 0.70833 x4 + 0.40833 x5  

  – 0.026389 x6 – 0.089087 x7 + 0.028150 x8 + O(x9) 

  // where the absolute values of the coefficients seem to decrease slowly. 

The range of convergence is surprisingly small compared with the original func-

tion exp(x), whose range of convergence is infinity. A plot of qxp(x) for the interval 

–1<x<1 shows the following graph: 

  

already a bit outside of this range the partial sums of the series cannot be summed 

even if 512 terms are taken into account. 

If we use the product we get 

 qxp(x)*exp(x) = (1–a2x2)(1–b2x4) (1–c2x6) (1–d2x8)… 

   = (1– x2)(1–1/4x4) (1—1/9x6)(1–9/64x8) (1–1/25x10)… 

   = 1 - 1 x2 - 0.25 x4 + 0.13889 x6 - 0.029514 x8 

       + 0.12840 x10 + 0.014778 x12 + 0.0026609 x14 + O(x16) 

and the plot for the convergent range 

  

The product can also be understood by two other complementary functions: 

 qxp(x)*exp(x)     = (1–a2x2)(1–b2x4) (1–c2x6) (1–d2x8)… 

 =poxp(x)*nexp(x)   

where all coefficients of the product-series are positive for poxp(x) and all are 

negative for nexp(x) (for pxp and qxp the signs alternate in a chaotic way). We get 

then for poxp(x) and nexp(x), expanded as powerseries: 

 poxp(x)  =1+ x + 0.5 x2 + 0.83333 x3 + 0.70833 x4 + 0.74167 x5 

      + 0.73472 x6 +0.73591 x7 + 0.73574 x8 + 0.73576 x9 + O(x10) 

 nexp(x)   = 1 - x – 0.5 x2 + 0.16667 x3 – 0.041667 x4 + 0.34167 x5  

      + 0.040278 x6 +0.075198 x7 - 0.13614 x8 + 0.099341 x9 + O(x10) 
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3.4. A step aside to the Goldbach-problem 

When contemplating the conversion from the productseries representation to that 

of the usual powerseries representation, we find some flavour of the Goldbach-

problem: is each even natural number the sum of two primes? 

If we consider the expansion of the product-formula into the powerseries expres-

sion, then for the coefficient at, for instance, x8 of the powerseries of exp(x) the 

following partial products of the pxp(x)-function are involved: 

 1/8!x8  determined by 

      a(8)x8,     (1+a(1)x)*(1+a(7)x7) ,      (1+a(2)x2)*(1+a(6)x6) , 

      (1+a(3)x3)*(1+a(5)x5)  

      (1+a(1)x1)* (1+a(2)x2)*(1+a(5)x5)  

      (1+a(1)x1)* (1+a(3)x3)*(1+a(4)x4)  

More precisely  

 1/8!x8 = (1*a(8) + a(1)*a(7) + a(2)*a(6) + a(3)*a(5) 

  + a(1)*a(2)*a(5) + a(1)*a(3)*a(4))x8  

  =(27/128 +  1 *(-1/7) + 1/2*13/72 + 1/3*1/5  

   – 1*1/2*1/5      –   1*1/3*3/8) x8  

So for the coefficient at index 2k of the powerseries, products of coefficients a(n) 

of the productseries are involved, whose indexes sum up to 2k. The Goldbach-

conjecture says then, that for each coefficient 2k of the powerseries (at least) one 

pair of prime-indexes p,q with p+q=2k are involved – and moreover, that 1/(2k)! 

is composed involving at least one of such products. 

The bell which is ringing here is, that the denominators of a(n) at composites in-

dexes (and thus of their product) are complicated and have high value, and the 

denominators of a(n) at prime indexes (and thus of their product) is small.  

So for the index 2k=8 in the powerseries expansion we have the product of the 

coefficients of the productseries a(3)*a(5) = -1/3*–1/5 involved. 

I didn't investigate this deeper, for the reader it may serve as a interesting detail. 

 

 

 

3.5. Conclusion 

The properties of this infinite product-series are far from being exhaustingly dis-

cussed. Maybe I'll find another spare time to proceed. The interested reader is 

cordially invited to send comments and/or extensions.  

Besides of that, I'll enjoy (and hope, you'll do too) the discovered (and also the still 

uncovered) rhythms and the symmetries of this beautiful "dream of a sequence". 

 

Gottfried Helms 
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4. Entries in OEIS 

Slightly shortened and formatted descriptions. For original source see links at [OEIS]  

Sequence of denominators (den(n)) equals A067911 except that at indexes of highly-composite n some prime-

powers are cancelled against the numerator. 

A067911 Product of GCD(k,n) for 1 <= k <= n.  
 1, 2, 3, 8,  

5, 72,  

7, 128, 81, 800,  

11, 41472,  

13, 6272, 30375, 32768,  

17, 3359232,  
19, 20480000, 750141, 247808,  

23, 13759414272, 15625, 1384448, 1594323, 5035261952,  

LINKS  T. D. Noe, Table of n, a(n) for n=1..500  

FORMUL  a(n) = Product_{ d divides n } d^phi(n/d).  

Vladeta Jovovic (vladeta(AT)Eunet.yu), Mar 08 2004  
CROSSR Cf. A018804, where product is replaced by sum.  

Product of terms in n-th row of A050873.  

AUTHOR  Sharon Sela (sharonsela(AT)hotmail.com), Mar 10 2002  

EXTENS  Extended and edited by John W. Layman (layman(AT)math.vt.edu) Mar 14 2002  

 

The sequence of coefficients factorially scaled (a(n) = num(n)/den(n)*n!) 

A137852 G.f.: Product_{n>=1} (1 + a(n)*x^n/n!) = exp(x).   

 1, 1, -2, 9, -24, 130, -720, 8505, -35840, 412776, -3628800, 42030450, -479001600, 

7019298000, -82614884352, 1886805545625, -20922789888000, 374426276224000, …  
COMMENT Equals signed A006973 (except for initial term), where A006973 lists the dimensions 

of representations by Witt vectors. 

FORMUL a(n) = (n-1)!*[(-1)^n + Sum_{d divides n, 1<d<n} d*( -a(d)/d! )^(n/d) ] for n>1 

with a(1)=1. 

EXAMPLE  exp(x) = (1+x)*(1+x^2/2!)*(1-2*x^3/3!)*(1+9*x^4/4!)*(1-

24*x^5/5!)*(1+130*x^6/6!)*...*(1+a(n)*x^n/n!)*... 
PROGRAM  (PARI) 

{a(n)=if(n<1, 0, 

          if(n==1, 1  

                 , (n-1)!*((-1)^n + sumdiv(n, d,  

                                            if(d<n&d>1, d*(-a(d)/d!)^(n/d)) 
                                          ) 

                           ) 

             ) 

        )}  

CROSSR Cf. A006973. 

AUTHOR  Paul D. Hanna (pauldhanna(AT)juno.com), Feb 14 2008 

 

The same, unsigned additional leading zero, was introduced even earlier: 

A006973  Dimensions of representations by Witt vectors. 
 0, 1, 2, 9, 24, 130, 720, 8505, 35840, 412776, 3628800, 42030450, 479001600, 

7019298000, 82614884352, 1886805545625, 20922789888000, 374426276224000,… 

REFERE Borwein, Jonathan; Lou, Shi Tuo, Asymptotics of a sequence of Witt vectors. J. 

Approx. Theory 69 (1992), no. 3, 326-337. Math. Rev. 93f:05007 

 Reutenauer, Christophe; Sur des fonctions symetriques reliees aux vecteurs de Witt. 
[ On symmetric functions related to Witt vectors ] C. R. Acad. Sci. Paris Ser. I 

Math. 312 (1991), no. 7, 487-490. 

 Reutenauer, Christophe; Sur des fonctions symetriques liees aux vecteurs de Witt et 

a l'algebre de Lie libre, Report 177, Dept. Mathematiques et d'Informatique, Univ. 

Quebec a Montreal, 26 March 1992. 

CROSSR Cf. A137852. 
AUTHOR Simon Plouffe (simon.plouffe(AT)gmail.com) 

EXTENS More terms from Michael Somos, Oct 07, 2001 

More terms from Paul D. Hanna (pauldhanna(AT)juno.com), Feb 14 2008 



 A Dream of a sequence S. -13- 

Musings in Recreational Maths  Mathematical Miniatures 

5. References/Links 

[OEIS] Online encyclopedia of integer sequences 
N. J. A. Sloane 

http://www.research.att.com/~njas/sequences/A067911  
http://www.research.att.com/~njas/sequences/A137852  

http://www.research.att.com/~njas/sequences/A006973  

[wiki-q] "Q-analogues" in "wikipedia" 
http://en.wikipedia.org/wiki/Q-analogue 

[wiki-m] "multiplicative function" in "wikipedia" 

http://en.wikipedia.org/wiki/Multiplicative_function 

Further readings 

 H. Gingold, A.Knopfmacher 

Analytic properties of Power Product Expansions 
Can. J. Math. Vol. 47 (6), 1995 pp. 1219-1239 

online: http://www.smc.math.ca/cjm/v47/cjm1995v47.1219-1239.pdf 

 Excerpt of the bibliography of that article 

 J. F. Ritt,  

Representation of Analytic Functions in Infinite Product Expansions, 
 Math. Z. 32(1930), 1-3 

 H. Gingold, H. W. Gould and M. E. Mays,  
Power Product Expansions,  
Utilitas Math. 34( 1988), 143-167 

 A. Knopfmacher, J. Knopfmacher and J. N. Ridley,  
Unique Factorizations of Formal Power Series,  
J. Math. Anal. Appl. 149(1990), 402-411. 

 A. Knopfmacher and L. Lucht,  

The Radius of Convergence of Power Product Expansions,  
Analysis 11(1991), 91-99. 

 A. Knopfmacher,  

Infinite Product Factorizations of Analytic Functions,  
J. Math. Anal. Appl. 162 (1991), 526-536. 

 H. Indlekofer and R. Warlimont,  

Remarks on the Infinite Product Representations of Holomorphic Function,  
Publ. Math. Debrecen 41(1992), 263-276. 

 J. Borwein and S. Lou,  

Asymptotics of a Sequence of Witt Vectors,  
J. Approx. Theory 69(1992), 326-337 

 H. Gingold, A. Knopfmacher and D. S. Lubinsky,  
The Zero Distribution of the Partial Products of Power Product Expansions,  
Analysis 13(1993), 133—157 

 A. Knopfmacher and J. N. Ridley,  
Reciprocal Sums Over Partitions and Compositions, 
SIAM J. Discrete Math. 6(1993), 388-399. 

 --------------- 

 H. Gingold  
Factorization of matrix functions and their inverses via power product expansions  

Linear Algebra and its Applications  

Volume 430, Issues 11-12, 1 June 2009, Pages 2835-2858 
http://dx.doi.org/10.1016/j.laa.2008.12.019 

 

My own project pages: 

[Helms] Main index for math-pages 
http://go.helms-net.de/math  

Gottfried Helms, Kassel, 01.01.2010 

(first version: 14.02.2009) 

 


