
Exponentia l D iophantine Exponentia l D iophantine Exponentia l D iophantine Exponentia l D iophantine

P roblem s P roblem s P roblem s P roblem s
Mersenne numbers

Gottfried Helms 2000-2011 http://go.helms-net.de/math

Mathematical

Miniatures

The Lucas-Lehmer-test for Mersenne-numbers

and the number Λ ~1.389910663524…

Introduction

The iterative Lucas-Lehmer-test for testing primality of Mersenne-numbers can

be expressed as iteration of some function fLL :

 fLL(x) = -2 + x2

(I use examples in the mathematical software program Pari/GP in the follow-

ing):

fLL(x)= -2 + x^2 \\ for Lucas Lehmer-test: Iterate beginning at x0=4

and its (p-2)th iteration beginning at x0=4 for the pth Mersenne-number

 Mp=2p-1

 fLL°p-2(4) ≡ 0 (mod 2p-1) Lucas-Lehmer-test of Mp = 2p-1

Pari/GP:

fLL_iter(x0,n,p) = local(mp = 2^p-1); for(k=1,n, x0 = fLL(x0) % mp) ;x0

fLucLeh(p) = fLL_iter(4, p-2, p) == 0 \\ Result: 0: Mp is composite, 1: Mp is prime

The motivation for this small article was initially to look at that formula as a

problem of continuous iteration (or: how the discrete iterations of the test

could be embedded in a continuous flow), and to see, whether we can make

something noteworthy out of this more general view. In the end the fractional

iteration was not evaluated further after the formalism for this had given rise

to a curious re-definition of the Lucas-Lehmer-test in terms of a single con-

stant.

So we'll reflect here the well known recipe for the continuous iteration of (fea-

sible) functions as developed by Ernst Schröder in the late 19th century12.

This method is best suited for analytic functions without constant term in their

power series representation. So we have first to find fixpoints of fLL and then

accordingly to recenter the polynomial around one of that fixpoints for the

forthgoing analysis. Then the "Schröder-function" and its inverse must be de-

1
 [Schroeder] Ernst Schröder (1870): Über iterierte Funktionen ; see reference list

2
 [wikiSchr] Wikipedia: "Schroederfunction", "iterated function"

 Lucas-Lehmer-Test and the number Λ ~1.389910663524… S. -2-

Primesnumbers and diophantine problems Mathematical Miniatures

termined to be able to formulate fractional iterates simply by fractional pow-

ers of a constant λ . The formula has in principle the form:

 xh = fLL_iter_frac(h , x0) = σ-1 (λh * σ(x0 - t1)) + t1

Here σ is the Schröder-function and σ-1 its inverse, t1 one feasible fixpoint, λ

the eigenvalue of the (recentered) original function, and h the iteration

"height".

The mechanism expressed by the Schröder-functions is perfectly parallel to the

use of diagonalization of the matrix-operator (Carlemanmatrix3) associated to

the original function fLL1 and we shall use that formalism here because in gen-

eral it makes the relations and whereabouts much transparent. Continuous

iteration reduces then to using fractional powers of the eigenvalues of the ma-

trixoperator. Obviously that eigenvalues should then be positive and this is

actually the case for the second of the recentered polynomials.

I've implemented the core procedures of this in the software Pari/GP (for

documentation see end of the article) and I'll show the discussion mostly in

form of the commented protocol of the software-interactions.

Construction of the matrixoperators for the recentered polynomials

For the implementation of arbitrary iterability we need fixpoints

In fLL(x) = -2 + x2

the condition for fixpoints is:

 fLL(x) = x

=> solutions: t0 = -1

 t1 = 2

\\ -2+x² find fixpoints –2 + x² = x or x² = 2 + x

t0 = -1

t1 = 2

This gives two different polynomials fLL0(x) and fLL1(x) recentered at the two

fixpoints. Both have then no constant term:

 fLL0(x) = fLL(x+t0) – t0 = -2x + x2

 fLL1(x) = fLL(x+t1) – t1 = 4x + x2

and have thus a form better suited also for the definition of noninteger itera-

tion in terms of power series:

\\ recentered functions without constant term

 \\ fLL_0(x) = fLL(x+t0)-t0 and t0 = -1

 \\ and insert iterability to (integer) heights h by a for-loop

fLL_0(x,h=1) = for(k=1,h, x = -2*x + x^2);x

 \\ fLL_1(x) = fLL(x+t1)-t1 and t1 = 2

fLL_1(x,h=1) = for(k=1,h, x = 4*x + x^2);x

3
 [wikiCarleman] Wikipedia: "Carlemanmatrix" (we use the transposed version here)

 Lucas-Lehmer-Test and the number Λ ~1.389910663524… S. -3-

Primesnumbers and diophantine problems Mathematical Miniatures

For the non-integer iteration heights we'll employ the concept of Schröder-

functions, implemented by the diagonalization of the matrixoperators/ Carle-

man-matrices associated with the functions.

So we generate matrix-operators (Carleman-matrices, transposed) for prepar-

ing the arbitrary height iteration (with n=128) rows/colums:

M0 = carleman (polcoeffs(fLL_0(x),n)); \\ matrixoperator/Carlemanmatrix for fLL_0

M1 = carleman (polcoeffs(fLL_1(x),n)); \\ for fLL_1

In the following we'll look at M1 only because M0 has a negative eigenvalue,

which is uncomfortable for fractional iteration. Also with a size of n x n = 128 x

128 a default float-precision of 200 dec digits in the software and a simple con-

vergence-acceleration due to Euler ("Euler summation") we the get intermedi-

ate values by the Schröder-function which are then exact to at least 30 digits

with some relevant parameters.

Prepare Schröderfunctions at the second fixpoint via matrix-diagonalization

To generate the diagonalization-matrices we solve for the hypothese M1 = W D

W-1 where D shall be diagonal. This can principally be done by the procedure

"mateigen" in Pari/GP.

 W = mateigen(M1); WI = W^-1; D = WI * M1 * W ;

Unfortunately this will produce spurious entries which makes the resulting ma-

trices non-triangular. But we can replace this by a specialized procedure for

triangular matrices (which also provides exact rational or even symbolic ma-

trixentries depending on the entries of the matrix to be diagonalized):

M1K = TriEigen(M1); W = M1K[1]; D = M1K[2]; WI = M1K[3]; \\TriEigen returns

 \\ a vector of 3 matrices

This are the resulting (triangular) matrices W and WI, (the trailing dots indicate

infinite size):

The diagonalmatrix D contains the consecutive powers of 4:

 D=matdiagonal ([1,4,16,64,…])

The matrix W contains now the coefficients ([0, 1, -1/12, 1/90,…]) of the

Schröder-function and WI that ([0, 1, 1/12, 1/360,…]) of its inverse in their sec-

ond columns. (Note, that in Pari/GP matrix- and vectorindices begin at 1), so

we have:

 σn(x) ∑
−

=

++

1

0

11,1

n

k

k

k xW σn
-1(x) = ∑

−

=

++

1

0

11,1

n

k

k

k xWI

and in the limit with infinitely many coefficients

 σ(x) = lim n->oo σn(x) σ-1(x) = lim n->oo σ-1
n(x)

 Lucas-Lehmer-Test and the number Λ ~1.389910663524… S. -4-

Primesnumbers and diophantine problems Mathematical Miniatures

A first shot: the numerical computation of the Schröderfunction

First we compute the value of the Schröderfunction at x0=4 . To improve ap-

proximation-quality we also use a low-order of Euler-summation/ conver-

gence-acceleration. The resulting value s1 is then the (approximate) value of

the Schröder-function at x0:

x0 = 4

s1 = ESumVec(0.25)*dV(x0 - t1)*W[,2]

 \\ = 1.7343781022726361504 This is unknown to Math'ca and Plouffe

Next we find, that the coefficients in WI (for the inverse-Schröder-function)

WI[,2] \\ show first n coefficients of the inverse of the Schröder-function

form an easily interpretable sequence

)!12(

1
22,1

+
=

+

k
WI k

2 * vectorv(n,r, 1/(2*(r-1))!)

That coefficients are much familiar: in principle this is the set of coefficients of

the function cosh(x):

2 * cosh(x)+O(x^16) \\ see that the taylor-series agree in principle

However, the sequence of coefficients in WI is dense but not in cosh(x) where

each second coefficient vanishes. But the match of coefficients in WI and

cosh(x) can be achieved if we write cosh(sqrt(x)) instead. This way being in-

serted in the inverse of the Schröder-function gives us then exactness of the

coefficients up to rational numbers and allows to leave that (harshly trun-

cated!) example of the WI behind and to resort to the much more exact ex-

pression in terms of the cosh() directly.

Arriving at a formula of exp only via cosh and cosh-1

So we adapt the approximated value s1 to fit conveniently the 2*cosh(sqrt(x))-

formula and call it the "Lucas-Lehmer-number" λ = LucLeh:

LucLeh=sqrt(s1)*2^-2 \\ adapt the "Lucas-Lehmer"-number s1 to fit the 2*cosh(x)-formula

 \\ 0.329239474231204177…

and check for a few values of p, for instance p=5:

[p=5 , mp = 2^p – 1]

2*cosh(LucLeh * 2^p) \\ = 37634.0000000

round(2*cosh(LucLeh * 2^p),&e) \\ = 37634

round(2*cosh(LucLeh * 2^p),&e) % mp \\ = 0

Since we are involved with iterations and the outer function is cosh, we could

now try whether λ is the cosh-1 of some more familiar argument. And bingo! :

Math'ica gives a much convincing guess for the value cosh(λ),

 cosh(λ) ≈
2

62 +

 Lucas-Lehmer-Test and the number Λ ~1.389910663524… S. -5-

Primesnumbers and diophantine problems Mathematical Miniatures

so that we guess now the closed-form definition for the new constant λ:

 λ = cosh-1 (
2

62 +)

with precision to arbitrarily many digits:

LucLeh = acosh(sqrt(2+sqrt(2+4))/2)

\\ 0.329239474231204177156261586826992111006745492821106086516800

\\ check for some p:

 [p=5, mp = 2^p – 1]

2*cosh(LucLeh*2^p) \\ = 37634.0000000

round(2*cosh(LucLeh*2^p),&e) \\ = 37634

round(2*cosh(LucLeh*2^p),&e) % mp \\ = 0

We can even append a final step to put it into one more familiar expression:

because we have 2*cosh(x) = exp(x) + exp(-x) and exp(-x) becomes exponen-

tially small for all the x in question we can ignore that latter spurious contribu-

tion and can reduce to

(exp(LucLeh*2^p) + exp(-LucLeh*2^p)) % mp

\\ reduces to

ceil(exp(LucLeh*2^p)) % mp

ceil(exp(LucLeh*2^3)) % (2^3 – 1)

ceil(exp(LucLeh*2^7)) % (2^7 – 1)

where all three examples meet the expected results.

Thus we can define an exponential Lucas-Lehmer constant Λ = exp(λ)

ELucLeh = exp(LucLeh)

\\ 1.38991066352414771791154881199221010219608990353920505265182

and give the Lucas-Lehmer-formula in the most simplified form (for instance

p=3)

ELucLeh^2^3 \\ = 13.9282032303

ceil(ELucLeh^2^3) \\ = 14

ceil(ELucLeh^2^3) % (2^3-1) \\ = 0

\\ thus as far as numerical precision and number of integer-digits allow:

p2 = 2^p \\ take p a prime

Mp = p2 – 1

if(0 == ceil (ELucLeh^p2) % Mp ,print("Mp is a mersenne prime"))

 Lucas-Lehmer-Test and the number Λ ~1.389910663524… S. -6-

Primesnumbers and diophantine problems Mathematical Miniatures

Unfortunately, this way of computation requires exponentially many digits for

one iterative Lucas-Lehmer-test and thus is computationally useless on com-

puters already for p>7 , but however may survive as a curious isolated result:

Gottfried Helms, 25.11.2011 email: helms@uni-kassel.de

Remark: the cosh-connection of that quadratic map was already known to E. Schröder

(see [Schroeder]) and is meanwhile also widely well known. For instance we find that

connection basically in a nice collection of Jörg Arndt [JArndt], pg. 799 and it found its

way from there to Chris Caldwell's much interesting and entertaining "prime pages"

[Caldwell]. A nice more general discussion about the iterated quadratic map is in Troy

Vasiga & Jeffrey Shallit (see [VasShall]) "On the iteration of certain quadratic maps

over GF(p)" of 2003.

Let Λ = e λ ~1.389910663524,

 p є <primes>,

 Mp = 2p – 1

then

   primesMM pp

p

∈⇔≡Λ)(mod0
2

 Lucas-Lehmer-Test and the number Λ ~1.389910663524… S. -7-

Primesnumbers and diophantine problems Mathematical Miniatures

Literature and Online links

[Schroeder] Über iterirte Functionen
Ernst Schröder
Math. Ann. 3 (2): 296–322

[wikiSchr] wikipedia "Schröder's equation"
http://en.wikipedia.org/wiki/Schr%C3%B6der%27s_equation

[wikiFIter] wikipedia "Function iteration"
http://en.wikipedia.org/wiki/Function_iteration

[wikiCarleman] wikipedia "Carleman Matrix"
http://en.wikipedia.org/wiki/Carleman_matrix

[VasShall] On the iteration of certain quadratic maps over GF(p)
Troy Vasiga & Jeffrey Shallit

[Oeis3010] sequence in "Online encyclopedia of integer sequences" (OEIS)
N.J.A. Sloane (editor)
http://oeis.org/A003010

[wikiLucLeh] wikipedia: Lucas-Lehmer-test
http://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test

[JArndt] Matters Computational – the fxtbook
Jörg Arndt
edited June 2010, pg 799
http://www.jjj.de/fxt/fxtbook.pdf

[Caldwell] "The prime pages": 3.2: n+1 tests and the Lucas-Lehmer test
Chris Caldwell
http://primes.utm.edu/prove/prove3_2.html

Pari/GP: basic functions used in the text

\\ This documentation is for simplicity without error-checks and optimizations

\\ ---

default(floatprecision,200) \\ default precision for most procedures

n=64 \\ set default vector and matrix-dimension

* Vandermonde vectors for evaluation of power series

 V(x,dim=n) = vector(dim,c,x^(c-1))

dV(x,dim=n) = matdiagonal(V(x,dim))

* Inversion of invertible lower triangular matrices, no error check

TriInv(m) = local(tmp, rs=rows(m), cs=cols(m));

 tmp = matrix(rs,cs);

 for(c = 1, cs,

 tmp[c,c] = 1 / m[c,c];

 for(r = c+1, rs,

 tmp[r,c] = - sum(k=c,r-1, m[r,k] * tmp[k,c]) / m[r,r]

);

);

 return(tmp);

* diagonalization of diagonalizable lower triangular matrices, no error check

TriEigen(U) = local(W, WI, D, dim);

 dim = rows(U) ;

 D = vectorv(dim,r, U[r,r]);

 W = matid(dim);

 for(c=1,dim-1,

 for(r=c+1,dim,

 W[r,c] = sum(k=c,r-1, U[r,k] * W[k,c]) / (D[c]-D[r])

));

 WI = matid(dim);

 for(r=2,dim,

 forstep(c = r-1,1,-1,

 WI[r,c] = sum(k=0,r-1-c,U[r-k,c] * WI[r,r-k])/(D[r]-D[c])

));

return([W,D,WI]);

